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Abstract. The interaction between a general magnetic source and a long type-II superconducting cylinder
in the Meissner or mixed state is studied within the London theory. We first study the Meissner state
and solve the Maxwell–London equations when the source is a magnetic monopole located at an arbitrary
position. Then the field and supercurrent for a more complicated magnetic charge distribution can be
obtained by superposition. A magnetic point dipole with arbitrary direction is studied in detail. It turns
out that the levitation force on the dipole contains in general an angular as well as a radial component.
By integration we obtain the field and supercurrent when the source is a two-dimensional monopole (a
magnetically charged long thread along the axial direction), from which the results for a two-dimensional
point dipole easily follow. In the latter case the levitation force points in the radial direction regardless of
the orientation of the dipole. The case for a current carrying long straight wire parallel to the cylindrical
axis is solved separately. The limit of ideal Meissner state is discussed in most cases. The case of mixed
state is discussed briefly. It turns out that vortex lines along the axial direction and vortex rings concentric
with the cylinder have no effect outside the cylinder and the levitation forces remain the same as in the
case of the Meissner state.

PACS. 74.20.De Phenomenological theories – 41.20.Gz Magnetostatics; magnetic shielding, magnetic
induction, boundary-value problems – 74.25.Ha Magnetic properties – 74.25.Op Mixed states, critical
fields, and surface sheaths

1 Introduction

The magnetic behavior of macroscopic superconductors
in the Meissner or mixed state can be approximately de-
scribed by the phenomenological London theory. Physical
problems involving magnetic sources and superconductors
are reduced to magnetostatic boundary value problems in
this approximation. More specifically, the magnetic induc-
tion and supercurrent distribution can be found by solving
the Maxwell–London equations with appropriate bound-
ary conditions. From these solutions one can calculate the
levitation force between the magnetic source and the su-
perconductor. Magnetic levitation is a characteristic prop-
erty of superconductors [1]. It has been argued that the
temperature dependence of the London penetration depth
and thus that of the magnetic levitation force is important
in studying the superconducting paring state [2]. This re-
lates the macroscopic phenomenological study to the mi-
croscopic mechanism of superconductivity.
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The above magnetostatic boundary value problems
can be solved analytically when the boundaries have sim-
ple geometric configurations. The simplest boundaries are
plane, sphere and cylinder. Many works have been devoted
to the various cases with planar boundary conditions [2–8].
The case with a spherical boundary has also been studied
by many authors [9–14]. On the other hand, the case with
a cylindrical boundary appears to be less studied. Vortex
lines in a long superconducting cylinder induced by exter-
nal fields [15] or vortex rings induced by the self-field of a
transport current [16] have been considered. These fields
are homogeneous along the axial direction of the cylinder.
The behavior of a finite superconducting cylinder under a
cylindrically symmetric external field were also studied in
the literature [17] (by numerical method). Recently some
magnetostatic boundary value problems involving a long
superconducting cylinder in the ideal Meissner state was
treated by the image method [13], where the magnetic
sources are uniform along the axial direction. However,
the most typical case of a long superconducting cylinder
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under the influence of a general external magnetic source
(a point dipole, say) appears to be unsolved so far. The
situation is somewhat unexpected since the London theory
has been developed for a rather long time. The external
field in this case has no symmetry, and the vector nature
of the Maxwell–London equations leads to some mathe-
matical difficulty. However, these equations are similar to
the Maxwell equations for monochromatic fields in free
space, and the approach to the solutions of these Maxwell
equations under cylindrical boundary is known [18]. The
approach can be appropriately modified to derive the so-
lutions for the current problem. The purpose of this paper
is to fill this gap. This may be of some interest in the study
of magnetic levitation [1,2,4–13,17,19–25] and may have
some applications to magnetic force microscopy [26–29].

In Section 2 we first study the general approach to the
solution of the Maxwell–London equations for the system
of a general magnetic source and a long superconducting
cylinder in the Meissner state. Then we present the ele-
mentary solution for the simplest case where the source
is a magnetic monopole. The fields and supercurrent for
more complicated distributions of magnetic charges (a
point dipole, say) can in principle be obtained from the
elementary solution by superposition. A magnetic point
dipole with arbitrary direction is studied in detail in Sec-
tion 3. It turns out that the levitation force on the mag-
netic dipole contains in general an angular as well as a ra-
dial component. In Section 4 we consider some cases where
the magnetic sources are uniform along the axial direction,
so that they can be treated as two-dimensional problems.
These include the cases of a two-dimensional magnetic
monopole (a magnetically charged long thread parallel to
the axis of the cylinder), a two-dimensional point dipole,
a uniform magnetic field perpendicular to the axis of the
cylinder, and a current carrying long straight wire parallel
to the axis of the cylinder. The solutions in all these cases
are obtained from the elementary solution by superposi-
tion except for the final one which is solved individually.
The levitation force between the superconducting cylinder
and the magnetic source is calculated in all cases. It turns
out that the levitation force on a two-dimensional point
dipole is independent of the dipole’s orientation. In Sec-
tion 5 we briefly discuss the mixed state of the supercon-
ducting cylinder. It was already known that vortex lines
parallel to the axis of the cylinder and vortex rings con-
centric with the cylinder have no field outside the cylinder.
Therefore the levitation forces remain the same as those
obtained for the Meissner state. Section 6 is devoted to
a brief summary and some discussions. Throughout this
paper we use MKS units.

2 General formalism and the elementary
solution

2.1 General formalism

Consider a general magnetic source in the presence of a
long superconducting cylinder in the Meissner state. We

choose the coordinate system such that the z axis coin-
cides with the axis of the cylinder. We will use the rectan-
gular coordinates (x, y, z) as well as the cylindrical ones
(ρ, φ, z). The unit vectors in these coordinate systems are
denoted by (ex, ey, ez) and (eρ, eφ, ez), respectively. The
position vector is denoted by r and the one on the xy
plane is denoted by ρ. The magnetic induction outside the
cylinder is denoted by B1 and the one inside it by B2. The
supercurrent density inside the cylinder is denoted by J .
We assume that the superconducting cylinder is insulated
to external current sources so that the total supercurrent
along the z direction vanishes, i.e.,

∫
ρ<a

Jz dρ = 0. The
cylinder has radius a, and in the subsequent discussions it
will be idealized as infinitely long.

The magnetic induction outside the cylinder can be
decomposed as

B1 = B0 + B′, (1)

where B0 is generated by the given source, which can be
written down directly, and B′ is generated by the induced
supercurrent in the cylinder. The Maxwell equation for
B′ is obviously

∇ · B′ = 0, ∇× B′ = 0. (2)

The magnetic induction B2 and the supercurrent J inside
the cylinder satisfy the Maxwell–London equation

∇ · B2 = 0, ∇ · J = 0, (3a)

∇× B2 = µ0J , ∇× J = −κ2

µ0
B2, (3b)

where κ is a phenomenological parameter with 1/κ being
the London penetration depth. The boundary condition
at the surface of the cylinder is

B1|ρ=a = B2|ρ=a. (4)

We assume that there is no electric current when ρ � a,
then in that region we have ∇ × B1 = 0. Using the first
equation in equation (3b) (Ampere’s law) and the above
boundary condition we have

Jρ|ρ=a = 0. (5)

A correct solution should satisfy this condition. It means
that the supercurrent is confined to the cylinder, which is
physically obvious.

Though the region outside the cylinder is not simply
connected, we can still introduce a magnetic scalar
potential ϕ′ such that B′ = −µ0∇ϕ′, since the total
supercurrent in the z direction vanishes. Then ϕ′ satisfies
the Laplace equation and the solution regular at infinity is

ϕ′(r) =
∫ +∞

−∞
dk

+∞∑

m=−∞
fm(k)Km(|k|ρ)eimφeikz , ρ ≥ a,

(6)
where Km(|k|ρ) are Bessel functions of imaginary argu-
ment, and the coefficients fm(k) are to be determined be-
low.
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The Maxwell–London equations (3) are similar to the
Maxwell equations for monochromatic fields in free space.
The approach to the solutions of the latter under cylindri-
cal boundary conditions [18] can be appropriately modi-
fied to derive the solutions of the former. It is easy to show
that both B2 and J satisfy the vector Helmholtz equation:

∇2B2 − κ2B2 = 0, ∇2J − κ2J = 0. (7)

In particular, we have

∇2B2z − κ2B2z = 0, ∇2Jz − κ2Jz = 0. (8)

The solutions regular at ρ = 0 are easily found to be

B2z(r)=
∫ +∞

−∞
dk

+∞∑

m=−∞
am(k)γ2

kIm(γkρ)eimφeikz , ρ ≤ a,

(9a)

Jz(r)=
∫ +∞

−∞
dk

+∞∑

m=−∞
bm(k)γ2

kIm(γkρ)eimφeikz , ρ ≤ a,

(9b)

where γk =
√

k2 + κ2 (the factor γ2
k is introduced here for

the following convenience), Im(γkρ) are Bessel functions
of imaginary argument, and the coefficients am(k) and
bm(k), together with fm(k) above, are to be determined
by the boundary condition (4). We define the transverse
vectors and operator as B2t = B2 − B2zez, Jt = J −
Jzez, and ∇t = ∇−ez∂z. For a single Fourier component
in z, that is, when B2z and Jz is proportional to eikz ,
equation (3b) can be solved to give

B2t(r) = −i
k

γ2
k

∇tB2z(r) +
µ0

γ2
k

ez ×∇tJz(r), (10a)

Jt(r) = −i
k

γ2
k

∇tJz(r) − κ2

µ0γ2
k

ez ×∇tB2z(r). (10b)

It can be shown that equation (3a) is also satisfied by
these solutions. According to equations (9) and (10), we
have

B2t(r) = −i∇t

∫ +∞

−∞
dk

+∞∑

m=−∞
am(k)kIm(γkρ)eimφeikz

+µ0ez×∇t

∫ +∞

−∞
dk

+∞∑

m=−∞
bm(k)Im(γkρ)eimφeikz , ρ ≤ a,

(11a)

Jt(r) = −i∇t

∫ +∞

−∞
dk

+∞∑

m=−∞
bm(k)kIm(γkρ)eimφeikz

−κ2

µ0
ez×∇t

∫ +∞

−∞
dk

+∞∑

m=−∞
am(k)Im(γkρ)eimφeikz , ρ ≤ a.

(11b)

When the source is given we can write B0 in similar forms
to the above solutions, and work out the unknown coeffi-
cients by the boundary condition (4). In the following we
will first find the solution when the source is a monopole
located at an arbitrary position (the elementary solution),
and then obtain the solutions for more complicated charge
distributions by superposition.

2.2 The elementary solution

First we consider the simplest case of a magnetic monopole
with magnetic charge Q located at the position r0 =
(ρ0, φ0, z0) (the position is always given in cylindrical co-
ordinates) where ρ0 > a. Though a magnetic monopole
has not been observed in experiment and thus is artificial,
the result is important for the subsequent problems.

The magnetic induction of the monopole can be ex-
pressed in terms of a magnetic scalar potential: B0 =
−µ0∇ϕ0, where

ϕ0(r) =
Q

4π|r − r0| . (12a)

This can be expanded near the surface of the cylinder as

ϕ0(r) =
Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
Km(|k|ρ0)

× Im(|k|ρ)eim(φ−φ0)eik(z−z0), ρ < ρ0. (12b)

According to the approach presented in the preceding
section, we obtain the following elementary solution

ϕ′(r) =
Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
gm(k)Km(|k|ρ0)

× Km(|k|ρ)eim(φ−φ0)eik(z−z0), ρ ≥ a. (13)

B2z(r) = −i
µ0Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
γ2

kcm(k)Km(|k|ρ0)

× Im(γkρ)eim(φ−φ0)eik(z−z0), ρ ≤ a, (14a)

B2ρ(r) = −µ0Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
γkKm(|k|ρ0)

×
[

k cm(k)I ′m(γkρ) + mκ2dm(k)
Im(γkρ)

γkρ

]

× eim(φ−φ0)eik(z−z0), ρ ≤ a, (14b)
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B2φ(r) = −i
µ0Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
γkKm(|k|ρ0)

×
[

mk cm(k)
Im(γkρ)

γkρ
+ κ2dm(k)I ′m(γkρ)

]

× eim(φ−φ0)eik(z−z0), ρ ≤ a. (14c)

Jz(r) = −i
κ2Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
γ2

kdm(k)Km(|k|ρ0)

× Im(γkρ)eim(φ−φ0)eik(z−z0), ρ ≤ a, (15a)

Jρ(r) =
κ2Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
γkKm(|k|ρ0)

×
[

m cm(k)
Im(γkρ)

γkρ
− k dm(k)I ′m(γkρ)

]

× eim(φ−φ0)eik(z−z0), ρ ≤ a, (15b)

Jφ(r) = i
κ2Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
γkKm(|k|ρ0)

×
[

cm(k)I ′m(γkρ) − mk dm(k)
Im(γkρ)

γkρ

]

× eim(φ−φ0)eik(z−z0), ρ ≤ a. (15c)

Here the prime indicates differentiation with respect to
the argument. The coefficients are given by

gm(k) =
g1m(k)
g2m(k)

,

cm(k) =
kγkaI ′m(γka)

g2m(k)
,

dm(k) =
mIm(γka)

g2m(k)
, (16a)

and

g1m(k) = −Im(|k|a)[k2a2γ2
kI ′2m(γka) + m2κ2I2

m(γka)]

+ |k|a2γ3
kI ′m(|k|a)I ′m(γka)Im(γka), (16b)

g2m(k) = Km(|k|a)[k2a2γ2
kI ′2m(γka) + m2κ2I2

m(γka)]

− |k|a2γ3
kK ′

m(|k|a)I ′m(γka)Im(γka). (16c)

Some remarks on the solution. First, all coefficients are
independent of r0 (the dependence of the above solution
on r0 has been explicitly factored out). This is convenient

for subsequent applications to more complicated sources.
Second, it is easy to see that gm(k) is even in both k and
m; cm(k) is even in m and odd in k; while dm(k) is even
in k and odd in m. Then the solution can be easily writ-
ten in an explicitly real form. However, the above form is
more compact and more convenient for the calculations in
subsequent sections. Third, it can be verified that equa-
tion (5) is indeed satisfied. Fourth, the solution is rather
complicated. Let us check some limit cases.

(1) κ → 0. This means that the London penetration depth
is infinitely large. In other words, the superconducting
cylinder is absent. Careful analysis of the above results
yields in this limit ϕ′ = 0, J = 0, and B2 = −µ0∇ϕ0 =
B0. These are physically expected results.

(2) a → 0. Again this is the limit of a vanishing supercon-
ducting cylinder. In this limit the field inside the cylin-
der can be ignored. Careful analysis of the above re-
sults yields again ϕ′ = 0, just as expected. One should
also ensure that cm(k) and dm(k) do not become sin-
gular when a → 0. This can be verified.

(3) κ → ∞. This is the limit of ideal Meissner state. In
this case it can be shown that

ϕ′(r) = − Q

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞

I ′m(|k|a)
K ′

m(|k|a)

× Km(|k|ρ0)Km(|k|ρ)eim(φ−φ0)eik(z−z0), ρ ≥ a.
(17)

Then it turns out that ∂ϕ1/∂ρ|ρ=a = 0, which is the
boundary condition for the ideal Meissner state. It can also
be shown that B2z and B2φ vanish for ρ < a while B2ρ

vanishes for ρ ≤ a, all are expected. For the supercurrent,
we have Jρ = 0 for ρ ≤ a, and

Jz(r) = i
Q

4π2a
δ(ρ − a)

×
∫ +∞

−∞
dk

+∞∑

m=−∞

mKm(|k|ρ0)
|k|aK ′

m(|k|a)

× eim(φ−φ0)eik(z−z0), ρ ≤ a, (18a)

Jφ(r) = −i
Q

4π2a
δ(ρ − a)

×
∫ +∞

−∞
dk ε(k)

+∞∑

m=−∞

Km(|k|ρ0)
K ′

m(|k|a)

× eim(φ−φ0)eik(z−z0), ρ ≤ a, (18b)

where ε(k) = k/|k| is the sign function. In this case they
are surface currents. The surface current density can be
worked out by the relations Kz = (1/a)

∫ a

0
Jzρ dρ and

Kφ =
∫ a

0 Jφ dρ. Then it can be shown that eρ ×H1 = K,
where H1 = B1/µ0. This is another boundary condition
for the ideal Meissner state. Thus all results are expected
ones.
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Now we calculate the levitation force on the magnetic
monopole. It is easy to find that

B′(r0) = −eρ0
µ0Q

2π2

∫ ∞

0

dk k [g0(k)K0(kρ0)K ′
0(kρ0)

+2
∞∑

m=1

gm(k)Km(kρ0)K ′
m(kρ0)

]

, (19)

where eρ0 = eρ(r0) (note that eρ and eφ are functions of
the position). Therefore the levitation force is

F = QB′(r0) = −eρ0
µ0Q

2

2π2

×
∫ ∞

0

dk k [g0(k)K0(kρ0)K ′
0(kρ0)

+2
∞∑

m=1

gm(k)Km(kρ0)K ′
m(kρ0)

]

. (20)

It points in the radial direction and the magnitude is in-
dependent of φ0 and z0, as is expected on the basis of the
geometric symmetry of the system. In the limit of ideal
Meissner state, this reduces to

F = eρ0
µ0Q

2

2π2

∫ ∞

0

dk k

[
I ′0(ka)
K ′

0(ka)
K0(kρ0)K ′

0(kρ0)

+2
∞∑

m=1

I ′m(ka)
K ′

m(ka)
Km(kρ0)K ′

m(kρ0)

]

. (21)

When d = ρ0 − a � a, the superconducting cylinder can
be approximately treated as an infinite superconducting
plane, so that the above result should further reduce to
F = eρ0(µ0Q

2/16πd2). However, we still do not know how
to obtain this result from the above one since the summa-
tion is rather complicated. This is an open question.

To conclude this section we briefly discuss the effect
of a nonvanishing supercurrent along the z direction. If
the superconducting cylinder is connected to some exter-
nal current source such that

∫
ρ<a Jz dρ = Iz is not zero,

then we should introduce the magnetic scalar potential ϕ′
through B′ = eφ(µ0Iz/2πρ) − µ0∇ϕ′. By similar calcu-
lations to the above we find that B2φ in equation (14c)
gains an additional term µ0IzI1(κρ)/2πaI1(κa) and Jz in
equation (15a) gains κIzI0(κρ)/2πaI1(κa), while all other
results remain the same. Therefore the effect of Iz outside
the cylinder is the same as that of a transport current
along the z axis. Since this is familiar we will set Iz = 0
throughout this paper.

3 Magnetic point dipole

In this section we study the case where the source is a
magnetic point dipole with dipole moment m0 located
at the arbitrary position r0. This is of physical interest
since it can be realized by a uniformly magnetized sphere
of permeable material. The solution can be obtained by

using the elementary solution and superposition. This is
a typical application of the elementary solution.

Theoretically the above point dipole can be realized by
two monopoles, one with charge −Q located at r0 and the
other with charge Q located at r0 + l, where l → 0 and
Q → ∞ but Ql = m0 is fixed. Since l → 0 the cylindrical
coordinates of r0 + l is (ρ0 + δρ, φ0 + δφ, z0 + δz) where
δρ = l · eρ0, δφ = l · eφ0/ρ0, δz = l · ez , and eφ0 = eφ(r0).
The magnetic scalar potential of this source dipole is

ϕ0(r) =
m0 · (r − r0)
4π|r − r0|3 . (22)

This is a result of the superposition of two monopole po-
tentials of the form (12a). By superposition of two ele-
mentary solutions we obtain the following solution for the
present case.

ϕ′(r) =
m0 · eρ0

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
|k|gm(k)

× K ′
m(|k|ρ0)Km(|k|ρ)eim(φ−φ0)eik(z−z0)

− i
m0 · eφ0

4π2ρ0

∫ +∞

−∞
dk

+∞∑

m=−∞
mgm(k)

× Km(|k|ρ0)Km(|k|ρ)eim(φ−φ0)eik(z−z0)

− i
m0 · ez

4π2

∫ +∞

−∞
dk

+∞∑

m=−∞
kgm(k)

× Km(|k|ρ0)Km(|k|ρ)eim(φ−φ0)eik(z−z0), ρ ≥ a. (23)

B2z(r) = − µ0

4π2ρ0

∫ +∞

−∞
dk

+∞∑

m=−∞
[i(m0 · eρ0)|k|ρ0

× K ′
m(|k|ρ0) + (m0 · eφ0)mKm(|k|ρ0)

+ (m0 · ez)kρ0Km(|k|ρ0)] γ2
kcm(k)

× Im(γkρ)eim(φ−φ0)eik(z−z0), ρ ≤ a, (24a)

Jz(r) = − κ2

4π2ρ0

∫ +∞

−∞
dk

+∞∑

m=−∞
[i(m0 · eρ0)|k|ρ0

× K ′
m(|k|ρ0) + (m0 · eφ0)mKm(|k|ρ0)

+ (m0 · ez)kρ0Km(|k|ρ0)] γ2
kdm(k)

× Im(γkρ)eim(φ−φ0)eik(z−z0), ρ ≤ a. (24b)

The other components B2t and Jt can be obtained in the
same way, or by using the above result and equation (11).
Since these are not needed below we do not give them
here.

Now we calculate the levitation force on the magnetic
dipole. It can be calculated by the following formula [18].

F = ∇(m0 · B′)|r=r0 = −µ0∇(m0 · ∇ϕ′)|r=r0 , (25)
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where r is replaced by r0 only after all differentiations are
carried out. We have

m0 · ∇ϕ′ = [(m0 · eρ0) cos(φ − φ0)

+ (m0 · eφ0) sin(φ − φ0)]∂ρϕ
′

+
1
ρ
[(m0 · eφ0) cos(φ − φ0)

− (m0 · eρ0) sin(φ − φ0)]∂φϕ′ + (m0 · ez)∂zϕ
′. (26)

Substituting this into equation (25), using equation (23),
working out the differentiations and finally set r = r0, we
obtain

Fρ = − µ0(m0 · eρ0)2

2π2

∫ ∞

0

dk k3[g0(k)K ′
0(kρ0)

× K ′′
0 (kρ0) + 2

∞∑

m=1

gm(k)K ′
m(kρ0)K ′′

m(kρ0)]

+
µ0(m0 · eφ0)2

π2ρ3
0

∫ ∞

0

dk
∞∑

m=1

m2gm(k)

× Km(kρ0)[Km(kρ0) − kρ0K
′
m(kρ0)]

− µ0(m0 · ez)2

2π2

∫ ∞

0

dk k3[g0(k)K0(kρ0)K ′
0(kρ0)

+ 2
∞∑

m=1

gm(k)Km(kρ0)K ′
m(kρ0)], (27a)

Fφ = −µ0(m0 · eρ0)(m0 · eφ0)
2π2ρ0

∫ ∞

0

dk k2[g0(k)K2
1 (kρ0)

+ 2
∞∑

m=1

gm(k)Km−1(kρ0)Km+1(kρ0)], (27b)

Fz = 0. (27c)

Some conclusions can be drawn from the result. First, the
levitation force contains in general an angular component
as well as a radial one. The angular component vanishes
when (m0 · eρ0)(m0 · eφ0) = 0, that is, when m0 ‖ eρ0 or
m0 ⊥ eρ0. Second, there is no simple relation among the
forces for dipoles with the three independent directions,
eρ0, eφ0, and ez.

There is another commonly accepted approach to the
levitation force. In this approach one first calculate the
self-energy of the magnetic dipole by the formula

U(r0) = − 1
2m0 · B′(r0), (28)

and then obtain the levitation force through the relation

F = −∇0U(r0), (29)

where ∇0 is the gradient with respect to r0. It can be
shown that

U(r0) =
µ0(m0 · eρ0)2

4π2

∫ ∞

0

dk k2

×
[

g0(k)K2
1 (kρ0) + 2

∞∑

m=1

gm(k)K ′2
m(kρ0)

]

+
µ0(m0 · eφ0)2

2π2ρ2
0

∫ ∞

0

dk

∞∑

m=1

m2gm(k)K2
m(kρ0)

+
µ0(m0 · ez)2

4π2

∫ ∞

0

dk k2

[

g0(k)K2
0 (kρ0)

+ 2
∞∑

m=1

gm(k)K2
m(kρ0)

]

. (30)

Using the relations ∂eρ0/∂φ0 = eφ0, ∂eφ0/∂φ0 = −eρ0,
it can be shown that equation (29) yields the same result
as above. In this calculation it is important to place the
dipole at an arbitrary position. If it is placed at some
special position with, say, φ0 = 0 (this is equivalent to a
special choice of the x axis), then the angular component
of the levitation force cannot be obtained in this way.

For a magnetic point dipole in the presence of a super-
conducting sphere, only special cases were studied previ-
ously, where the magnetic dipole points in the radial or
transverse direction [9–14]. In those cases the levitation
force always points in the radial direction. If the magnetic
moment of the dipole has both radial and transverse com-
ponents, it may be expected that the levitation force also
contains a transverse component. This should be verified
by further study.

It should be pointed out that the field obtained above
is only approximately valid if the source dipole is re-
alized by a uniformly magnetized sphere, since then it
is not really a point source, and its magnetization may
be changed by the interaction with the superconduct-
ing cylinder. Moreover, the levitation force holds approx-
imately only when the radius of the magnetized sphere is
much smaller than ρ0 so that the induced magnetic induc-
tion B′ can be treated as uniform in the region occupied
by the sphere. These remarks also apply to similar situa-
tions in the following.

4 Problems in two dimensions

In this section we will consider problems where the mag-
netic sources are uniform in the axial direction. In these
cases all the fields and the supercurrent are independent
of z, so we will use two-dimensional language and employ
the polar coordinates (ρ, φ).

4.1 Elementary solution in two dimensions

In this section we consider the simplest case where the
source is a magnetically charged long thread (or a line
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charge) parallel to the axis of the cylinder. In the two-
dimensional language it is called a monopole, and its
charge is the linear charge density q of the long thread.
The line charge passes through the xy plane at the point
ρ0 = (ρ0, φ0) (in the two-dimensional cases the position is
always given in polar coordinates) where ρ0 > a. Equiv-
alently we will say that the monopole is located at ρ0.
The solution in this case is the two-dimensional elemen-
tary solution, since solutions for more complicated charge
distributions can be obtained from it by superposition.

The field equations in this case can be solved directly
and it is easier than the case of Section 2. As before, ϕ′
satisfies the Laplace equation and the two-dimensional so-
lution can be easily written down. It is physically obvious
that B2z = 0, then it follows from Ampere’s law that
Jt = 0. The equation for Jz is the same as that in equa-
tion (8), but the solution in two dimensions is simpler.
Then B2t can be easily obtained from the London equa-
tion (the second in Eq. (3b)). The source field B0 can
be written down directly. By using the boundary condi-
tion (4) all unknown coefficients in the solution can be
determined. However, we will find the solution by super-
position as we have done in Section 3. This is another
typical application of the elementary solution obtained in
Section 2.

We use the same notations for the fields and supercur-
rent as in three dimensions. Consider the magnetic scalar
potential in equation (12b). We replace Q in this equation
by q dz0 and integrate z0 from −∞ to +∞. The result
is the magnetic scalar potential for the two-dimensional
monopole:

ϕ0(ρ) = − q

2π
ln

|k|
2

∣
∣
∣
∣
k→0

+
q

2π

[

− ln ρ0

+
∞∑

m=1

1
m

(
ρ

ρ0

)m

cosm(φ − φ0)

]

, ρ < ρ0. (31a)

The first term is a divergent constant, which can be re-
moved by choosing an appropriate reference point. Since
the choice of a reference point does not affect the mag-
netic induction, we will drop this term directly. Then it
can also be written as

ϕ0(ρ) = − q

2π
ln |ρ − ρ0|, (31b)

which is a familiar result, and is valid for ρ > ρ0 as well.
We then apply the same procedure to the solution given
in equations (13) to (15). The results are the required
solution for the current case. No divergent constant appear
in these results. For the induced field we obtain

ϕ′(ρ) =
q

2π

∞∑

m=1

Im+1(κa)
mIm−1(κa)

(a2/ρ0)m

ρm

× cosm(φ − φ0), ρ ≥ a. (32a)

In the ideal Meissner limit κ → ∞ this reduces to

ϕ′(ρ) =
q

2π
ln ρ − q

2π
ln

∣
∣
∣
∣ρ − a2

ρ2
0

ρ0

∣
∣
∣
∣ , ρ ≥ a, (32b)

which is the result obtained in reference [13], and is the ba-
sis of the image method for a long superconducting cylin-
der in the ideal Meissner state. For the magnetic induction
inside the cylinder we have the nonvanishing components

B2ρ(ρ) = −µ0q

π

∞∑

m=1

m
am−1

ρm
0 Im−1(κa)

× Im(κρ)
κρ

cosm(φ − φ0), ρ ≤ a, (33a)

B2φ(ρ) =
µ0q

π

∞∑

m=1

am−1

ρm
0 Im−1(κa)

× I ′m(κρ) sin m(φ − φ0), ρ ≤ a. (33b)

For the supercurrent we have only one nonvanishing com-
ponent

Jz(ρ) =
κq

π

∞∑

m=1

am−1

ρm
0 Im−1(κa)

× Im(κρ) sin m(φ − φ0), ρ ≤ a. (34)

In the ideal Meissner limit κ → ∞ we have B2φ = 0 and
Jz = 0 for ρ < a, and B2ρ = 0 for ρ ≤ a, as expected.

The levitation force acted on the monopole (actually
it is the force per unit length on the line charge) is

F = qB′(ρ0) = eρ0
µ0q

2

2π

∞∑

m=1

Im+1(κa)
Im−1(κa)

a2m

ρ2m+1
0

. (35)

This can be recast in the form

F =
µ0q

2

2π

a2ρ0

ρ2
0(ρ

2
0 − a2)

− eρ0
µ0q

2

π

∞∑

m=1

mIm(κa)
κaIm−1(κa)

a2m

ρ2m+1
0

, (36)

where the first term is the result obtained in the ideal
Meissner limit [13], and the second term is a correction
due to the finite penetration depth, which vanishes in the
limit κ → ∞. We see that the levitation force is reduced
by the correction.

4.2 Magnetic point dipole in two dimensions

In this section we consider a two-dimensional magnetic
point dipole with dipole moment m0 located at ρ0 (where
ρ0 > a). This is of physical interest since it can be realized
by a long cylinder of permeable material uniformly mag-
netized in the transverse direction. The solution in this
case can be obtained from the two-dimensional elemen-
tary solution by superposition.

The above point dipole can be theoretically realized
by two monopoles, one with charge −q located at ρ0 and
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the other with charge q located at ρ0 + l (here l is a two-
dimensional vector), where l → 0 and q → ∞ but ql = m0

is fixed. Since l → 0 the polar coordinates of ρ0 + l is
(ρ0 + δρ, φ0 + δφ) where δρ = l · eρ0, δφ = l · eφ0/ρ0. The
magnetic scalar potential of the source dipole is

ϕ0(ρ) =
m0 · (ρ − ρ0)
2π|ρ − ρ0|2 . (37)

This results from the superposition of two monopole po-
tentials of the form (31b). By similar superposition of two
elementary solutions of Section 4.1, we obtain the solution
for the present case. For the induced field we obtain

ϕ′(ρ) =
1
2π

∞∑

m=1

Im+1(κa)
Im−1(κa)

a2m

ρm+1
0 ρm

× [−(m0 · eρ0) cosm(φ − φ0)
+ (m0 · eφ0) sin m(φ − φ0)], ρ ≥ a. (38a)

In the ideal Meissner limit this reduces to

ϕ′(ρ) =
m′ · [ρ − (a2/ρ2

0)ρ0]
2π|ρ − (a2/ρ2

0)ρ0|2 , ρ ≥ a, (38b)

where

m′ =
a2

ρ2
0

[m0 − 2(m0 · eρ0)eρ0]. (38c)

This is the result obtained by the image method [13]. For
the magnetic induction inside the cylinder we have the
nonvanishing components

B2ρ(ρ) =
µ0

π

∞∑

m=1

m2am−1

ρm+1
0 Im−1(κa)

× Im(κρ)
κρ

[(m0 · eρ0) cosm(φ − φ0)

− (m0 · eφ0) sin m(φ − φ0)],
ρ ≤ a, (39a)

B2φ(ρ) = −µ0

π

∞∑

m=1

mam−1

ρm+1
0 Im−1(κa)

× I ′m(κρ)[(m0 · eρ0) sin m(φ − φ0)
+ (m0 · eφ0) cosm(φ − φ0)],

ρ ≤ a. (39b)

For the supercurrent we have only one nonvanishing com-
ponent

Jz(ρ) = −κ

π

∞∑

m=1

mam−1

ρm+1
0 Im−1(κa)

× Im(κρ)[(m0 · eρ0) sin m(φ − φ0)

+ (m0 · eφ0) cosm(φ − φ0)],
ρ ≤ a. (40)

In the ideal Meissner limit we have B2φ = 0 and Jz = 0
for ρ < a, and B2ρ = 0 for ρ ≤ a, as expected.

The levitation force can be found to be

F = ∇(m0 · B′)|ρ=ρ0

= eρ0
µ0m

2
0

2π

∞∑

m=1

m(m + 1)Im+1(κa)
Im−1(κa)

a2m

ρ2m+3
0

. (41)

By calculating the self-energy of the dipole and then tak-
ing the negative gradient as in Section 3, we obtain the
same result. As was found in the ideal Meissner limit, the
levitation force does not depend on the orientation of the
dipole. This is rather different from the three-dimensional
result in Section 3. The above result can be recast in the
form

F =
µ0m

2
0

π

a2ρ0

(ρ2
0 − a2)3

− eρ0
µ0m

2
0

π

∞∑

m=1

m2(m + 1)Im(κa)
κaIm−1(κa)

a2m

ρ2m+3
0

, (42)

where the first term is the result obtained in the ideal
Meissner limit [13], and the second term is a correction
due to the finite penetration depth, which vanishes in the
limit κ → ∞. We see again that the levitation force is
reduced by the correction.

4.3 Uniform magnetic field

As another application of the two-dimensional elementary
solution, we consider the influence of the superconducting
cylinder on a uniform magnetic field H0 = H0ex where
H0 is a constant.

The uniform magnetic field can be realized by two large
monopoles at infinity. We put one monopole with charge
−q at ρ0 = (L, 0) and the other with charge q at ρ′

0 =
(L, π). According to equation (31b) the source potential
is found to be

ϕ0(ρ) = − q

πL

∞∑

k=0

ρ2k+1

(2k + 1)L2k
cos(2k + 1)φ, ρ < L.

(43)
By superposition of two elementary solutions we can write
down all the fields and the supercurrent for the present
situation. In particular, we find that the induced magnetic
induction B′ is the same at ρ0 and ρ′

0. Therefore the
levitation force on the monopole system is zero, so is the
one on the superconducting cylinder. The conclusion also
holds in the following limit case.

We only write down the results in the limit where
q, L → ∞ but q/πL = H0 is fixed. In this limit only the
term with k = 0 in the above equation contributes and we
have for any finite ρ

ϕ0(ρ) = −H0ρ cosφ = −H0x,

H0 = H0ex. (44)
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Thus the source monopoles generate a uniform magnetic
field. In this limit the fields and supercurrent are listed
below. Only nonvanishing components are given.

ϕ′(ρ) = −H0a
2 I2(κa)
I0(κa)

cosφ

ρ2
, ρ ≥ a. (45)

B2ρ(ρ) =
2µ0H0

I0(κa)
I1(κρ)

κρ
cosφ,

B2φ(ρ) = −2µ0H0

I0(κa)
I ′1(κρ) sin φ, ρ ≤ a. (46)

Jz(ρ) = − 2κH0

I0(κa)
I1(κρ) sin φ, ρ ≤ a. (47)

In the ideal Meissner limit ϕ′ reduces to the result ob-
tained by the image method [13], while B2φ = 0 and
Jz = 0 for ρ < a, and B2ρ = 0 for ρ ≤ a. These are
all expected results.

4.4 Steady electric current

In this section we consider a long straight wire parallel to
the z axis carrying an electric current I. It passes through
the xy plane at the point ρ0 (where ρ0 > a as before).
The magnetic induction for this current is

B0(ρ) =
µ0I

2π

ez × (ρ − ρ0)
|ρ − ρ0|2 . (48)

Since the electric current is not a superposition of mag-
netic charges, the solution for the present case cannot
be obtained from the elementary solution. Therefore the
problem should be solved individually. The approach to
the solution has been outlined in the second paragraph of
Section 4.1. We only give the results here. In order to de-
termine the coefficients in the solution, the above source
field should be expanded as

B0ρ(ρ) = −µ0I

2π

∞∑

m=1

ρm−1

ρm
0

sinm(φ − φ0),

B0φ(ρ) = −µ0I

2π

∞∑

m=1

ρm−1

ρm
0

cosm(φ − φ0), ρ < ρ0.

(49)

For the induced field we obtain

ϕ′(ρ) =
I

2π

∞∑

m=1

Im+1(κa)
mIm−1(κa)

(a2/ρ0)m

ρm
sin m(φ−φ0), ρ ≥ a.

(50a)
In the ideal Meissner limit the corresponding magnetic
induction can be recast in the form

B′(ρ) =
µ0I

2πρ
eφ − µ0I

2π

ez × [ρ − (a2/ρ2
0)ρ0]

|ρ − (a2/ρ2
0)ρ0|2 , ρ ≥ a,

(50b)

which is the result obtained by the image method [13].
For the magnetic induction inside the cylinder we have
the nonvanishing components

B2ρ(ρ) = −µ0I

π

∞∑

m=1

mam−1

ρm
0 Im−1(κa)

× Im(κρ)
κρ

sin m(φ − φ0), ρ ≤ a, (51a)

B2φ(ρ) = −µ0I

π

∞∑

m=1

am−1

ρm
0 Im−1(κa)

× I ′m(κρ) cosm(φ − φ0), ρ ≤ a. (51b)

For the supercurrent we have only one nonvanishing com-
ponent

Jz(ρ)=−κI

π

∞∑

m=1

am−1

ρm
0 Im−1(κa)

Im(κρ) cosm(φ−φ0), ρ ≤ a.

(52)
In the ideal Meissner limit we have B2φ = 0 and Jz = 0 for
ρ < a, and B2ρ = 0 for ρ ≤ a, as expected. One can also
confirm the above results by examining the limit κ → 0
or a → 0.

The levitation force (per unit length) on the source
current is

F = eρ0
µ0I

2

2π

∞∑

m=1

Im+1(κa)
Im−1(κa)

a2m

ρ2m+1
0

. (53)

This has essentially the same form as the levitation
force for the two-dimensional monopole obtained in equa-
tion (35), thus the subsequent discussions below that
equation also apply here.

5 The mixed state

In this section we briefly discuss the case when the cylin-
der is in the mixed state so that there exist vortex lines
or rings inside it. We only discuss the effect of these vor-
tices on the magnetic source outside the cylinder. We do
not consider the influence of the magnetic source on the
creation and distribution of the vortices. It is obvious that
the solution to the field equations when there exist both
external sources and vortex lines can be obtained by su-
perposition of the solution with only external sources and
the one with only vortex lines. Therefore it is sufficient
to consider only vortex lines in this section. Furthermore,
the solution when there are several vortex lines are the su-
perposition of the several solutions each for one individual
vortex line. First we consider a vortex line parallel to the
axis of the cylinder and centered at the position ρ1 (here
ρ1 < a). The field equations for this case have been solved
in the literature [15]. It turns out that the field is confined
to the cylinder. Therefore one or more such vortex lines
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have no effect on the magnetic source outside the cylinder,
and the levitation force on the source is the same as that
obtained in the case when the cylinder is in the Meissner
state. Second we consider a vortex ring concentric with
the cylinder, which has the radius ρ1 (again ρ1 < a) and
vertical position z1. By solving the field equations it turns
out again that the fields outside the cylinder is null [16].
Therefore vortex rings of this type have no effect on the
magnetic source outside the cylinder either. Third we may
consider vortex lines along some diameter of the cylinder,
or even more general ones. It may be expected that such
vortex lines would have effect on the magnetic source out-
side the cylinder. However, it is somewhat difficult to solve
the field equations in this case, and the situation needs
further study.

6 Summary and discussions

In this paper a general formalism for solving the Maxwell–
London equations for a general magnetic source in
the presence of a long superconducting cylinder in the
Meissner state is studied. By this formalism we first solve
the simplest case when the source is a magnetic monopole.
The result is then used as the elementary solution for
the subsequent cases where the source is a magnetic
point dipole with arbitrary direction, a two-dimensional
monopole, a two-dimensional point dipole and a uniform
magnetic field perpendicular to the axis of the cylinder.
The solutions in all these cases are obtained from the el-
ementary solution by superposition. In principle, this can
be used for an arbitrary distribution of magnetic charges.
We also solve separately the case where the source field is
generated by a current carrying long straight wire parallel
to the axis of the cylinder. The levitation force between the
superconducting cylinder and the magnetic source is cal-
culated in all cases. It turns out that the levitation force on
a point dipole contains in general an angular component
as well as a radial one. Similar result may be expected for
a superconducting sphere. On the other hand, for a two-
dimensional point dipole the levitation force always points
in the radial direction and its magnitude is also indepen-
dent of the dipole’s orientation. The ideal Meissner limit
is discussed in all cases and the two-dimensional results
are compared with those obtained by the image method.
We also discussed the mixed state of the superconducting
cylinder. It was already known that vortex lines parallel
to the axis of the cylinder and vortex rings concentric with
the cylinder have no field outside the cylinder. Therefore
the levitation forces remain the same as those obtained
for the Meissner state. Nontrivial effect may be expected
for a vortex line along some diameter of the cylinder, or
more general ones. This should be examined by further
investigation.

The formalism studied in this paper can also be used
to solve some other situations that are not discussed here.
For example, the case with a current carrying circular loop

concentric with the cylinder may be solved without diffi-
culty. Based on the symmetry it may be expected that the
levitation force in this case is zero. On the other hand, a
nontrivial result may be expected for a non-concentric one.
However, this is rather difficult mathematically.
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